Rabu, 10 November 2021

ALJABAR BOOLEAN

  • Pengertian Teorema De Morgan

Statistik matematika terkadang membutuhkan penggunaan teori himpunan. Hukum De Morgan adalah dua pernyataan yang menggambarkan interaksi antara berbagai operasi teori himpunan. Hukumnya adalah untuk dua himpunan A dan B :

  1. ( A  ∩ B ) C = A C U B C .
  2. ( A U B ) C = A CB C .

Untuk memahami apa yang Hukum De Morgan katakan, kita harus mengingat beberapa definisi operasi teori himpunan. Secara khusus, kita harus tahu tentang penyatuan dan persimpangan dua himpunan dan komplemen dari himpunan.

Hukum De Morgan berhubungan dengan interaksi penyatuan, persimpangan, dan komplemen. Ingatlah bahwa:

  • Persimpangan set A dan B terdiri dari semua elemen yang umum untuk kedua A dan B . Persimpangan dilambangkan dengan A  ∩ B .
  • Gabungan himpunan A dan B terdiri dari semua elemen baik di A atau B , termasuk elemen di kedua himpunan. Persimpangan dilambangkan dengan AU B.
  • Komplemen dari himpunan A terdiri dari semua elemen yang tidak unsur A . Komplemen ini dilambangkan dengan A C .
  • Contoh Teorema De Morgan

pertimbangkan himpunan bilangan real dari 0 sampai 5. Kami menulis ini dalam notasi interval [0, 5]. Dalam himpunan ini kita memiliki A = [1, 3] dan B = [2, 4]. Selanjutnya, setelah menerapkan operasi dasar, kami memiliki:
  • Komplemen A C = [0, 1) U (3, 5]
  • Komplemen B C = [0, 2) U (4, 5]
  • Serikat A U B = [1, 4]
  • Persimpangan A  ∩ B = [2, 3]
  •  Pengertian K Map(Karnaugh Map)

Karnaugh Map atau K-Map adalah suatu teknik penyederhanaan fungsi logika dengan cara pemetaan. K-Map terdiri dari kotak-kotak yang jumlahnya terdiri dari jumlah variable dan fungsi logika atau jumlah inputan dari rangkaian logika yang sedang kita hitung.

Langkah – langkah pemetaan K-Map secara umum :

  1. Menyusun aljabar Boolean terlebih dahulu
  2. Menggambar rangkaian digital
  3. Membuat Table Kebenarannya
  4. Merumuskan Tabel Kebenarannya
  5. Lalu memasukkan rumus Tabel Kebenaran ke K-Map (Kotak-kotak)

Jenis - Jenis K-Map :
  • K-Map 2 variabel
  • K-Map 3 variabel
  • K-Map 4 variabel
  • K-Map 5 variabel
  • K-Map 6 variabel

Salah satu contoh penerapan dari K-Maps dalam dunia aljabar Boolean adalah:

  • Referensi

    •  https://binus.ac.id/bandung/2019/12/metode-k-maps/
    •  https://www.greelane.com/id/sains-teknologi-matematika/matematika/what-are-de-morgans-laws-3953524/


Tidak ada komentar:

Posting Komentar

PENGERTIAN DDA (Digital Differential Analyzer), BRESENAM, MIDPOINT CIRCLE

DDA (Digital Differential Analyzer) DDA adalah algoritma pembentukan garis berdasarkan perhitungan  Δx  dan Δy, menggunakan rumus y = m. Δ ...